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Abstract. Compared with the traditional neural network, Wavelet Neural Network (WNN) has
many advantages, but it cannot achieve the expected modeling effect when dealing with the
nonlinear modeling problem with large input dimension. In order to solve this problem, a WNN
modeling method based on Rough Set (RS) attribute reduction is proposed. In this method, a
heuristic attribute reduction RS algorithm is used to reduce the input variables in advance, and then
the WNN model is established on this basis. The experiment result on the aerodynamic modeling of
the aircraft shows that the proposed method is effective and feasible, so as to provide a good choice
for the nonlinear modeling of complex systems.

1. Introduction

Wavelet Neural Network (WNN) is a special form of neural network. It not only inherits the
advantages of adaptive learning, parallel processing, information distribution and storage of neural
networks, but also overcomes the problems of local minima and slow convergence [1]. The
disadvantage is that the input information space dimension cannot be simplified. When the input
information space dimension is large, the network is not only complex in structure, but also need a
long training time. In the analysis of complex databases, the input information has not only large
dimension but also noise interferences, simply using WNN cannot achieve the desired results.

The emergence of Rough Set (RS) theory brings an opportunity to solve this problem. Through
analyzing the inherent relationship between data information, RS can not only remove redundant
information, but also simplify the space dimension of input information, that is, it can find the
inherent rules of data information. But it also exist the shortcoming in fault tolerance, generalization
ability and processing of qualitative information. Based on above analysis, RS is integrated with
WNN to construct a new modeling method, which can reduce the complexity of WNN structure,
shorten the training time and improve the generalization performance of WNN in theory.

To process complex problems effectively, a heuristic RS attribute reduction recursive algorithm
is introduced to reduce the redundant attributes. Simulation verifies its effectiveness.

2. Wavelet Neural Network

WNN proposed by Zhang Q. H. is a new neural network, as shown in Fig. 1,
where x (i=12,---,1) is the network input, y,(k=12,---,K) is the network output, w; is the

connection weight from input layer to hidden layer; w,; is the connection weight from hidden

layer to output layer. 1,J,K are the nodes number of input layer, hidden layer and output layer
respectively. w(-) is the wavelet basis function in hidden layer.
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Fig. 1. Structure of WNN

3. A Heuristic Attribute Reduction Algorithm of RS

Attribute reduction is one of the core problems in RS theory research. A decision system may
have many relative reductions, it is always desirable to get the reduction with the least attribute, i.e.
the minimum reduction, and it has been proved that finding the minimum reduction is the NP-hard
problem. This problem is usually based on the heuristic search method. By adding heuristic
information to the algorithm, the search space of the problem is reduced to obtain easily the optimal
solution or approximate optimal solution. In determining the optimal decision attributes before
WNN modeling, on the basis of hierarchical structure and approximation precision concept, a
heuristic attribute reduction recursive algorithm is introduced to effectively solve complex problems
[2][3].

In the decision information system(U,CUD,V, f), U isthe object set,and C is the condition
attribute set, D is the decision attribute set, V = UVr (V, is the value range of attribute reR);

reR

f can be thought of as the function between U and R (f:UxR -V, f(xr)eV,). Suppose
that X is a subset of U. For each X , the indiscernibility relation B(B c A).

For the condition attributes, if the decision value of the objects in indiscernibility relation set is
the same, then the decision system is compatible; otherwise, it is incompatible. In the attribute
reduction algorithm, the equivalence relation of all condition attributes firstly need to be determined
in compatible decision information system, then the upper and lower approximation sets with
respect to decision value are calculated for each equivalence relation. The heuristic parameter &

can be obtained by

(1B (X)1=1B.(X)])

- U |

1)

where B, (X) is the lower approximation set, B*(X) is the upper approximation set. The attribute

with the smallest & is selected. For given universe of discourse, the lower approximate value can
be used as the basis for pruning

U =U-POS,{d} (2)

where POS, ,{d} is the object set corresponding to the decision attribute d that the condition

attributes of reduction set red can be classified into U. Repeat the process and select the attribute
with the smallest &. Each time the remaining attributes are combined with the attributes in the
reduction set red to form a new equivalence relation. The algorithm is recursive and its calculation
is terminated until the universe of discourse given is empty.

The calculation steps of recursive attribute reduction algorithm are as follows:
1. The reduction set red can be initialized as @ (empty set), C is all condition attributes.
2. & of each condition attribute in C is calculated by the formula (1).

3. All & are sorted in descending order, and the attribute with the smallest & is selected. If
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two attributes have the same &, the attribute with the least attribute value can be selected. If & is
the same and the attribute value is the same, an attribute can be selected at random.

4. The selected attribute a; is put into red and reduced from C, conducting the formula (2).

5. 1f U is @, go to step 7; otherwise, go to the next step.

6. The condition attributes in red are combined with the remaining condition attributes in C, and
repeat steps 2~5.

7. The final reduction set red is obtained, and the reduction is terminated.

The process of above attribute reduction algorithm can be illustrated by the decision table as
shown in Table 1. C={c,,c,,c;,c,} is the condition attribute set, d is the decision attribute.

Table 1 Decision Table

U Cl C2 CS C4 d
1 1 1 1 3 2
2 2 1 1 1 1
3 1 2 2 2 2
4 1 1 3 2 2
5 1 1 1 1 1
6 2 2 2 2 1
7 2 2 2 3 2
8 1 1 3 1 1
9 1 2 3 2 2
10 1 2 2 1 2

For each condition attribute in Table 1, the formula (1) is used to calculate the heuristic
parameter &, obtaining the results in Table 2.

Table 2 First Round Indiscernibility Relation Set

Decision attribute C, C, Cy c,
Lower %} %) (%] %
d=1 2,3,4,5
Upper U U U 6,’ 8,’ 9: 1(’)
Lower %) %) %) 1,7
d=2
Upper U U U u
3 2 2 2 8/5

Example: considering the condition attribute c,
The decision attribute d = 1:
B'(X)={2,3,4,5,6,8,9 10}, |B"(X)]=8;
B.(X)=0,

B.(X)|=0; [U|=10

_(B(X)[-IB.(X)]) _8-0
|U | 10

The decision attribute d = 2;

=4/5

S
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B"(X)=U, |B"(X)[=10;

B.(X)={L7}, |B.(X)|=2; [U|=10

_ (B (X)|-[B.(X)]) _10-2
U | 10

=4/5

&2

E=E+&=4/5+4/5=8/5

Through the same process, the heuristic parameter & of c,,c,,c, can also be calculated. It
can be seen from Table 2 that & of c, isthe smallestin c,c,,c;,c,, then the attribute c, can be
placed in the reduction set red, that is

red < {c,}, red ={c,}

C«C-red, C={c,c,,C}

Use the formula (2) to prune the domain, and the reduced domain is
POS ., {d}={1L7}

U «U-POS, {d}={2,3,4,5,6,8,9,10}

Subsequently, the processing procedure is repeated using the combined attributes, as shown in
Table 3 and Table 4. Because & of c, isthe smallest in Table 2, then it can get

red < red U{c,}, red ={c,,c,}

C«C-red, C={c,c,}

U «U-POS,_,{d}={3 6}

Because & of c, isthe smallestin Table 3, it can get
red «red U{c}, red ={c,,c,,c;}

C <« C-red ={c,}

This momentU =&, that is, according to the condition attributec,,c;,c,, the equivalence relation
ind(d) can be distinguished. Accordingly, the reduced attribute subset red ={c,,c,,c,}.

Table3 Second Round Indiscernibility Relation Set

Decision attribute C,,C C,,C, C,C;
Lower 2,6 2,5,8 2,5,8
d=1 2,6,5 2,5,8
Upper 8,10 369 2,58,3,6
Lower 3,4,9 4,10 4,9,10
d=2
Unper 3,4,9,5, 3,4,6, 3,4,6,9,
PP 8,10 9,10 10
¢ 3/4 3/4 1/2
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Table 4 Third Round Indiscernibility Relation Set

Decision attribute C,,C3,C, C,,C5,Cy
Lower 6 (%)
d=1
Upper 6 3,6
Lower 3 (%)
d=2
Upper 3 3,6
& 0 2

4. Realization of RS-WNN

The basic idea of integration modeling based on RS and WNN: firstly, analyze the sample data,
and form an initial information table according to the known knowledge, and then the resolution
function method is used to conduct the relative reduction for conditional attributes, the minimum
condition attribute set and the kernel of the decision table are obtained by removing the redundant
condition attribute. The union set of the minimum condition attribute set is taken as the input of
WNN to realize the final decision classification. The specific steps are as follows:

1. Initial decision table formation. In initial sample data collected, some parameters are repeated,
while others are missing. When forming a complete initial information table, these repetitive
parameters must be deleted, and the necessary characteristic parameters will be supplemented.

2. Decision table formation. Using the condition attributes and decision attributes value to form
a two-dimensional table, each row describing an object, each column corresponding to an attribute
of the object.

3. Attribute reduction. Using the heuristic attribute reduction method introduced, the decision
table is reduced and the minimum condition attribute set is obtained.

4. Model establishing. Use the minimum condition attribute set as input and the decision
attribute as output to train the WNN model.

5. Results Analysis: The WNN model was tested using the test samples and the test results were
output.

5. Experiment Simulation

Aerodynamic modeling of quasi-steady stall is a more complex nonlinear modeling problem.
The WNN model which can accurately reflect the aerodynamic characteristics of the quasi-steady
stall for aircraft ATTAS is established without reference to any stall hysteresis physical phenomena.
The used flight data is measured from ATTAS flight in quasi-steady stall conditions [4]. The
longitudinal aerodynamic model of quasi-steady stall for ATTAS can be expressed as

[C,.C,..C.1=(5.,8,,5., p.q, I, &, BV, p, Fl, Fr,Ma) (3)

In fact, the longitudinal aerodynamic modeling of quasi-steady stall using RS-WNN in the
formula (3) is such a process that WNN with inputs &,,4,,9,,p, q.r,a,a,8,V,p,Fl,Fr,Ma and

outputs C,,C_, C_ is trained to obtain the longitudinal aerodynamic model that can accurately
describe the dynamic characteristics of the quasi-steady stall for ATTAS. p,q,r is the roll, pitch
and yaw angular rate, «,f isthe angle of attack and sideslip angle, V is the true velocity, é,,5,,6,
are the elevator, aileron and rudder angle, pis the atmospheric density, Fl, Fr are the thrust of
left and right engine respectively.C_,C,is the lift and drag force coefficient, C_ is the pitching

moment coefficient. Then the formula (3) is reduced by RS to obtaine,q,V, J,, and on the basis, the
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WNN aerodynamic model is established.

Fig. 2 gives the prediction results of the RS-WNN longitudinal aerodynamic model of
quasi-steady stall. The training convergence curve of RS-WNN model is shown in Fig. 3. It can be
seen from experimental results that the built model can accurately describe the complex
aerodynamic phenomenon, and can reflect the dynamic characteristics of quasi-steady stall process.
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Fig. 2. Prediction results of longitudinal aerodynamic RS-WNN model for ATTAS quasi-stall
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Fig. 3. Convergence curve of RS-WNN model training

6. Conclusion

To improve the modeling performance of WNN, a WNN modeling method based on RS is
proposed. In the method, a heuristic RS attribute reduction recursive algorithm is introduced to
remove the redundant variables in advance before WNN modeling, and then the reduced variables is
used to train the model of WNN. The experiment shows that RS-WNN method can solve the
problem on nonlinear system modeling.
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